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ABSTRACT 

ABC Analysis is an inventory categorization technique used to classify and prioritize 

inventory items in an effort to better allocate business resources.  “A” items are defined 

as the inventory items considered extremely important to the business, requiring strict 

oversight and control.  “B” items are important to the business, but don’t require the tight 

controls and oversight required of the “A” items.  “C” items are marginally important to 

the business.  ABC Analysis aims to ensure the business-driving inventory items are 

effectively and efficiently managed. 

There are numerous single- and multiple-criteria approaches to implementing 

ABC Analysis.  This thesis presents an analysis and comparison of multiple approaches, 

as they relate to Navy Weapons Systems Support (WSS) Command’s large National Item 

Identification Number (NIIN) inventory.  Additionally, random forests are grown from 

the inventory metadata to identify and/or verify the attributes most strongly affecting fleet 

readiness goals.  The model will allow WSS to focus resources not only on the correct 

NIINs, but in the correct areas of NIIN management.  Better WSS resource allocation 

will result in higher fleet readiness, WSS’s primary goal.  
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EXECUTIVE SUMMARY 

Always Better Control (ABC) analysis is an inventory management technique based on 

Pareto’s law which states that the significant items in a group usually constitute a small 

portion of the items in that group (Duffuaa, Raouf, & Campbell, 1999, p. 198).  In early 

ABC analysis, inventory was prioritized based on its dollar usage, which is unit demand 

multiplied by unit price.  Over time, the idea of managing inventory based on dollar 

usage has morphed into a strategy of managing inventory based on a multitude of criteria.  

Data analysis, simulation, and optimization have all been adopted by numerous ABC 

analysis techniques in an effort to tailor prioritization schemes to a variety of companies 

within a variety of industries. 

Weapon Systems Support (WSS) aims to adopt and implement a new tailored 

ABC analysis approach to its inventory management process.  Historically, WSS has 

managed procurement and repair contracts via a first-in, first-out method.  WSS intends 

to improve its service to the fleet by boosting the efficiency and effectiveness at which it 

manages inventory.  Service to the fleet can be improved by optimally managing the 

inventory items that contribute greatest to operational readiness, fill rate, and budget 

requirements. 

Various ABC analysis techniques are considered for applicability to WSS 

processes and requirements.  Each model offers its own pros and cons, including the way 

variables are determined and applied to inventory item prioritization.  To determine the 

best fit for WSS, variable and/or metric selection for prioritization is required.  The data 

analyzed consists of non-specialized maritime national item identification numbers 

(NIINs) requisitioned at least once over the three-year time frame from April 2011 

through March 2014.  The list of NIINs analyzed totals nearly 18,000.  Because fill rate is 

the primary metric used to measure WSS effectiveness, it is the metric considered for 

regression analysis.  Regression analysis, in the form of random forests, is conducted on 

the full dataset to determine the primary drivers of fill rate.  Demand, price, and lead time 

are identified as those primary drivers. 
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In addition to fill rate drivers, a measure of criticality is representative of the 

importance of a part to operational readiness.  Subject matter expertise is used to 

determine how to account for this vital measure in a modeling approach.  A criticality 

measure is applied to each NIIN based on casualty report requisition volume, requisition 

priorities, and item management essentiality codes.  This measure of criticality, coupled 

with measures of demand, price, and lead time, provides a suitable and accurate 

representation of an item’s importance to operational readiness and fill rate. 

Given the factors identified as important to any WSS NIIN-prioritization model, 

the multi-criteria weighted non-linear optimization (WNO) model proves to be the best 

option.  The model accepts any number of NIINs and NIIN attributes.  The attributes are 

subjectively ranked in terms of importance, which forces the weights of higher ranked 

attributes to be higher than those of lower ranked attributes.  Weights are optimally 

assigned to priority-ranked NIIN attributes so as to maximize the sum of factor-based 

scores across all NIINs being ranked.  This technique identifies the order in which NIINs 

should be optimally managed based on the priorities specified. 

Based on the data analysis and subject matter expertise, a total of six factors are 

used to prioritize NIINs in the weighted non-linear optimization (WNO) prioritization 

model.  In order of priority, they are criticality, dollar usage, requisition volume, 

requisition variance, procurement problem variable (PPV), and variance of PPV.  PPV is 

a measure of demand over repair and procurement lead time.  Once the model is run and 

the scores are generated, NIINs are priority-ranked based on those scores in descending 

order.  The result of the model is a maximization of the cumulative capture of each factor 

as NIINs are added to the list in prioritized order. 

The cumulative capture of various metrics is compared between the WNO model 

approach and various other modeling approaches.  Other model approaches include 

ranking NIINs based on requisition and whiskey requisition volumes, requisition volume, 

criticality score, dollar usage, and randomly.  Random NIIN rankings produced 

incredibly poor results.  The other models performed better than WNO in one or two 

measures, but much worse than WNO in others.  From an across-the-board holistic 

perspective, WNO significantly outperformed all other models. 
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Unlike each of the other models, WNO encourages tighter controls on factors 

strongly affecting fill rate, operational readiness, budget and lead time.  Focusing on each 

of these factors rather than just one or two of them identifies and attacks the root of what 

eventually becomes a lower fill rate metric.  For instance, high variance in lead times or 

requisition volume contributes to extremely poor inventory level predictability.  Focusing 

item manager and contract specialist attention on these underlying issues could account 

for and/or stabilize the variance, leading to higher fill rates.  Another example considers 

dollar usage.  Shelved inventory represents inventory budget that is unavailable for the 

purchase of other items.  If the shelved inventory is extremely expensive, the tradeoff for 

holding it is the inability to purchase many more less expensive inventory items.  The 

WNO model does not focus on meeting immediate demand; it focuses on identifying the 

important and problematic items under management. 

The time frames of requisition data used to rank NIINs are 24 months for 

requisitions and 12 months for whiskey requisitions.  These decisions were made by WSS 

managers based on experience, previous analysis, and subject matter expertise.  

Sensitivity analysis is conducted on alternate time frames ranging from 36 months down 

to 6 months.  The analysis shows that cumulative metric capture changes very little as the 

time frames change.  Therefore, re-prioritizing NIINs every 6-12 months based on 24 

months of requisition and 12 months of whiskey requisition data is a suitable approach 

for the model. 

In an effort to compare and contrast different models, numerous single- and 

multiple-criteria prioritization models are also employed to rank NIINs.  Specific 

emphasis is placed on comparing the WNO model with the ABCD model, a model based 

solely on requisition and casualty report volume that is currently being implemented by 

WSS.  To test the predictive ability of WNO, particularly in comparison with the ABCD 

model, requisition data for a recent 3-month time frame is analyzed.  The results show 

that more than 500 requisitions were categorized higher by the WNO model than the 

ABCD model.  200 of them were categorized in the top two WNO categories (out of 4) 

versus the lowest ABCD category (out of 4).  Additionally, the fill rates for those 

requisitions were significantly lower than the WSS fill rate average.  This analysis is very 
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limited in scope, as it covers such a short time frame, but the results are in line with the 

theory behind using more than just requisition volume to prioritize NIINs. 

 Any of the models introduced, analyzed, and compared are far superior to the 

historically employed first-in, first-out process.  Still, of all the models explored, the 

WNO model certainly provides the best holistic approach for NIIN prioritization.  The 

value provided by the model would affect numerous aspects of NIIN management and 

ultimately provide significant benefits to WSS metrics and the operational readiness of 

the U.S. Naval Forces. 
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I. INTRODUCTION 

A. BACKGROUND 

The Naval Supply Systems Command (NAVSUP) Weapons System Support 

(WSS) branch is responsible for the parts support of naval maritime and aviation weapon 

systems.  This support includes numerous aspects such as procurement, production, 

repair, and transportation.  WSS’s responsibility is uniquely complex relative to other 

private sector businesses due to the size of its inventory (more than 400 thousand parts) 

and its multi-item, multi-indenture, multi-echelon (MIME) system.  The two specific 

components making the system MIME are parts repair and the numerous distribution 

centers.  Specifically, depot level repairable (DLR) items are not only issued to customers 

by WSS, but also are received back from customers when they become inoperable.  WSS 

contracts a repair order on that part so that it can be repaired and placed back into WSS 

inventory to fulfill a future customer’s request.   

Each part in the Navy supply system is identified by its own unique National Item 

Identification Number (NIIN).  NIIN inventory support consists of two primary 

processes, planning and contracting.  The projected naval supply needs for each NIIN 

must be individually analyzed and planned (both long-term and short-term) by WSS 

planners.  Once the NIIN support plan is determined, contracting specialists work to have 

that NIIN placed on production and/or repair contracts.  These processes vary with every 

NIIN, based on vendor, weapon system, budget, and numerous other variables.  

Additionally, the NIIN plans and contracts must be periodically reviewed and updated to 

reflect attribute changes.   

Consider an example involving a DLR cooling pump required for a weapon 

system installed on numerous warships.  A WSS item manager is assigned to manage the 

support for that pump.  Suppose the item manager notices that demand has suddenly 

increased for the pump and concludes that the initial group of procured and installed 

pumps is starting to reach the end of its life cycle.  Knowing that it will not be long 

before additional pumps fail, the item manager plans for a demand spike by requesting an 
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increase in procurement and/or repair contracts for the pump.  That request is transmitted 

to contracting specialists who then obligate funds to contract the repair of inoperable 

pumps and/or procurement of new pumps.  The ready-for-issue (RFI) pumps would then 

be sent to a supply depot to replenish the pump inventory in anticipation of the demand 

spike forecasted by the item manager.    

Planners and contractors currently process all NIIN requirements primarily via a 

first-in, first-out (FIFO) system.  In uncommon cases where there are immediate fleet 

readiness issues, fleet supply officers contact WSS to specifically request that NIINs be 

prioritized based on immediate mission needs and worked as soon as possible.  This 

process is applied to all NIINs across the board, regardless of NIIN attributes.  The 

current system does not necessarily allocate WSS’s limited resources, such as contracting 

specialist time and budget, to the items most important to fleet readiness.  The suboptimal 

resource allocation leads to less-than-ideal WSS performance metrics such as fill rate 

(available stock to fill initial order), average delay days (time it takes WSS to release 

material for shipment), backorders (unfilled orders awaiting fulfillment), logistics 

response time (time between customer requisition and delivery), and so on.  Perhaps fleet 

readiness, WSS’s primary goal, might be higher with a more objective resource allocation 

process. 

In an effort to increase fill rate, WSS is in the process of implementing a four-

band “ABCD” inventory classification system for its maritime inventory.  The goal of 

this system is to prioritize and focus WSS resources on NIINs in the highest demand 

band (A), which would minimize or eliminate the unfilled orders on those items.  

Limiting the missed fills on those high-demand items would give WSS the largest fill rate 

“bang for the buck” resource allocation.  The system looks solely at demand, casualty 

reports (CASREPs), and platform readiness drivers to group NIINs into the four 

categorical bands.  CASREPs are requisitions for parts required to fix a system critical to 

the ship’s assigned mission.  Platform readiness drivers are NIINs identified by planners 

to be very problematic, either from a mission readiness perspective or a supply chain 

perspective.  No other NIIN attributes are considered in this classification scheme.  The 

classification category thresholds are determined by managers based on what they deem a 
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manageable workload within each group.  WSS introduced this system in November of 

2013 and has been slowly implementing the system into its maritime inventory 

management process over the first few quarters of 2014. 

Table 1 describes the proposed ABCD criteria for inventory classification 

established by WSS managers.  Criteria that govern this process consider NIIN 

requisitions over the past 24 months and NIIN CASREP requirements over the past 12 

months.  For instance, a NIIN must have a minimum of 55 requisitions or nine CASREPS 

to be classified as an “A” NIIN.  Additionally, there were approximately 30 items moved 

to the B category from the C/D categories due to specific platform-degrading qualities.  

The number of WSS-managed maritime NIINs that fall into each category is also listed. 

 

Classification   Requisitions(24 months) / CASREP(12 months)    NIINs 

A                                 ≥ 55 or ≥ 9                                   673 

B                                 ≥ 27 & ≤ 9                                   747 

C                                 ≥ 13 & ≤ 9                                1,489 

D                                 ≤ 12 & ≤ 9                            137,976 

Table 1.   Classification levels are set via historical 24-month demand data, 
12-month CASREP data, and specified platform degraders. 

While this ABCD method introduces at least some sort of prioritization scheme, 

there are many more factors that surely influence fleet readiness and WSS effectiveness.  

This thesis explores alternative modeling techniques and factors that may provide more 

value to WSS and the naval fleet than just fill rate.  For instance, over 1 billion dollars 

has been spent by WSS to repair and procure parts over the past 24 months.  A model that 

considers only requisitions and CASREPs may not be the best technique for improving 

efficiencies associated with WSS budget allocation.  Small improvements in efficiency 

might equate to hundreds of millions of dollars in savings and/or significant readiness 

improvements.  
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Because large inventories can be extremely difficult and expensive to manage 

optimally, the ABC classification gives managers a way to prioritize business resources.  

The “A” items are considered to be the major business drivers, accounting for a large 

portion of the sales.  They should be allocated ample resources and assigned tight 

controls in an effort to maximize efficiencies in meeting demand.  The “B” group is 

approximately twice as large as the “A” group, equates to only about a third of the “A” 

group’s business, and requires looser controls.  All other items make up the “C” group.  

This group typically consists of 70% of all inventory items and is responsible for a trivial 

portion of the business.  Because there is very little return on the investment, resources 

should be allocated to “C” items only as required.  By focusing on the business drivers, 

the ABC method allows businesses to significantly increase return on capital by lowering 

inventory costs and minimizing stock-out rates.   

Original ABC analysis is the first of many inventory control techniques currently 

employed throughout the corporate world.  Each method focuses on a different metric, 

and its applicability varies from business to business.  Table 2 displays a few of the early 

alternative ABC methods and their respective focus measures.  A few of the measures for 

these methods are subjective in nature and can be difficult to both implement and update 

as conditions change.   

 

Table 2.   Descriptions of ABC-derived inventory management techniques 
(from Gopalakrishnan, 2002, p. 165). 
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With business models varying greatly across industries, these ABC models have 

been adopted and tailored to fit specific situations.  Additionally, as business models have 

evolved and computing power has strengthened, more complex multi-criteria inventory 

models have been developed and improved.  Regardless of the model most applicable to 

a particular business, Pareto’s law and the ABC classification model remain the 

underlying principles behind most inventory management techniques in use today.  In the 

case of WSS’s resource allocation, numerous ABC model variants and their applicability 

to the WSS NIIN dataset are explored in an effort to determine the most appropriate fit.     

C. THESIS PURPOSE 

The purpose of this thesis is to determine the most applicable and effective 

modeling approach to prioritize the large number of NIINs under WSS control.  Various 

ABC methods are researched and analyzed in an effort to understand their potential 

applicability to the WSS business processes.  WSS inventory item and sales document 

data are studied and analyzed to determine the factors most important to operational 

readiness and fill rate.  Based on those factors, the best ABC model can be selected and 

tailored to WSS inventory management needs.  Once the model is built, it will be used to 

prioritize WSS NIINs for resource allocation.  

The model results are compared and contrasted with alternative prioritization 

methods, including the ABCD method currently being implemented by WSS.  The 

models will be compared using inventory attributes and metrics determined to have a 

significant impact on WSS’s primary goal, fleet readiness.  This thesis also explores what 

types of fleet readiness improvements could be expected through the implementation of 

an ABC classification system.  The data used in this thesis was provided by Navy 

Weapons Systems Support.   
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III. DATA AND METHODOLOGY 

A. SCOPE 

NAVSUP WSS is responsible for the program and supply support of Naval forces 

weapons systems.  This entails wholesale- and retail-level support for both maritime and 

aviation weapons systems.  For decades prior to March of 2010, the Navy used a 

combination of legacy systems to provide parts support to the fleet.  The introduction of a 

new Enterprise Resource Planning (ERP) system in 2010 provided the Navy with a single 

system able to monitor and control the Navy’s entire inventory.  With its implementation, 

came the ability to track all aspects of parts flow through the Navy’s MIME model.  The 

detailed data gives analysts a great ability to identify issues and make significant 

progressive changes to WSS business rules and inventory practices. 

The vast number of systems and components comprising each of the Navy’s 

warships, coupled with the numerous types of active platforms, results in an extremely 

large number of parts required to keep the fleet operating.  Compared to the aviation 

community where a much larger number of aircraft operate within each platform, 

intermittent and low demand items are much more prevalent in the maritime community.  

This leads to much lower predictability and forecasting success, which results in lower 

fill rate and operational readiness.  Fill rate represents the proportion of orders WSS is 

able to immediately fill with on-hand inventory.  Fill rate is an overarching metric that 

affects, in at least some capacity, all other WSS performance metrics.  The maritime 

forecasting difficulty is a big reason why WSS currently achieves supply fill rates of 

approximately 70% for maritime operations versus 90% for aviation operations.  Due to 

the greater complexity and higher challenges associated with maritime items, this study 

will focus only on maritime NIINs. 

Time frame is also a major consideration in this analysis.  All maritime NIINs 

with a demand of at least one unit over the three-year period from April 2011 through 

March 2014 are included in the analysis.  NIINs failing to accumulate at least a single 

demand over that period are assumed to be highly unpredictable, low priority, and a poor 
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return on investment from a resource-allocation perspective.  Because the majority of 

maritime NIINs are dormant stock with little demand, this constraint places the majority 

of maritime NIINs in the lowest priority band.  Sensitivity analysis is conducted with 

various time frames in mind, but the demand data and metrics prior to March of 2011 

remain excluded from the study.   

Another consideration for the study’s scope is particular NIIN characteristics.  For 

various reasons, WSS is directed to manage NIINs differently based on predefined 

mission priorities.  In other words, many NIINs have been classified by higher authority 

to warrant maximum attention, and they will not compete with the majority pool of 

NIINs for priority resource allocation.  Specific examples of exclusions from the pool 

include parts that are specific to nuclear platforms, the SUBSAFE program, performance 

based logistics (PBL) contracts, and specific cognizance codes (COG).   

Nuclear platforms are considered by the Department of Defense (DOD) to be of 

the utmost priority.  Therefore, parts required specifically to support those platforms will 

not compete with other parts for resources.  SUBSAFE items are those considered vital to 

the safe operation of submarines.  Like nuclear parts, they have the utmost priority and do 

not compete with other parts for resources.  PBL NIINs are items that are under contract 

to be supplied directly by a commercial logistics provider.  These contracts are put in 

place for numerous reasons that are intended to improve readiness and/or costs.  Navy 

COG codes are two-digit classification codes that identify the type and manager of a 

NIIN.  Though there are more than 180 COG codes used in the supply system, six codes 

make up the majority of the Navy’s inventory.  The NIINs classified within this group of 

six COGs compete with each other for resources.  They are the focus of this study, and 

their details are shown below in Table 3. 
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Table 3.   Details of the six COGs included in the analysis. 

Another consideration for NIIN inclusion in this analysis is the item’s maturity.  

NIINs experience five life-cycle phases: initial operational capability, pre-material 

support date, demand development interval, mature, and sunset.  The majority of items 

are in the mature life-cycle phase (phase 4), and they are the ones analyzed and 

prioritized. 

Over time, parts change due to a multitude of reasons, including design and/or 

supplier changes.  When a change takes place, the updated parts are identified by new 

NIINs.  Most of the time, updated and old parts remain interchangeable and can be 

substituted for each other.  In this case, the NIINs are assigned to a family code that 

identifies them as being interchangeable.  Within the family, the primary NIIN is 

considered the family “head,” while each of the others is considered a family “member.”  

In this analysis, demand for the entire family is summed and applied to the family head 

NIIN.  The characteristics associated with the family head NIIN are the ones applied to 

that family. 

In summary, the scope of this analysis includes WSS-managed maritime NIINs 

with a demand of at least one over the specified three-year time frame.  Nuclear, 

SUBSAFE, PBL, and specified cognizance items will be excluded.  Only items in the 

mature phase of their lifecycle will be analyzed.  Of the 272,000 maritime NIINs, 

140,885 of them meet the Nuclear, SUBSAFE, COG, PBL, and lifecycle constraints.  

When considering a demand history of at least 1 in the past three years and the family 
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associations, the number of NIINs used in the analysis is just 17,587.  These are the 

NIINs analyzed and ultimately prioritized by the model.      

B. DATA 

The NIIN details available via ERP reports include more than 70 different 

attributes pertaining to the more than 400,000 parts in the Navy’s supply system.  The 

availability, accuracy, and units of measure of certain elements vary greatly across the 

universe of NIINs.  These attributes reflect unique qualities of each NIIN, including 

classification, lead time measures, demand, forecasts, physical characteristics, price, etc.  

Before addressing the analysis of attribute interrelationships and their correlation to fleet 

readiness performance measures, a few of the basic overarching data categories and their 

primary components are discussed.  Specifically, these are demand, lead times, repair 

measures, price, and classifications.   

Demand is a category with significant effect on fleet readiness.  In terms of ERP 

features, the category’s primary components are demand forecast, demand sigma 

(deviation), requisition frequency, requisition size, regeneration demand, and attrition 

demand.  Demand forecast is the expected unit demand of an item based on numerous 

analytical tools, methods, and demand history.  As outlined in the Navy ERP’s functional 

design specifications document, the forecasting process uses a six-step method with a 

system of classifications, checks, and balances to determine and verify the forecasting 

method most applicable to each NIIN.  The process of forecasting demand for an item 

consists of the following six primary steps: 

 Determine unit history pattern 

 Perform historical data outlier analysis 

 Perform process change analysis     

 Perform trend analysis 

 Calculate demand forecast and sigma 

 Perform statistical process control analysis    

Demand sigma is a measure of the demand variability.  ERP is able to apply 

different measures of demand deviation to NIINs based on demand characteristics.  
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Requisition size and requisition frequency represent the average number of units per 

order and the number of orders per quarter, respectively.  Attrition demand is the portion 

of demand expected to be fulfilled through the purchase of new material, also known as 

“new procurement.”  Regeneration demand is the portion of demand expected to be 

fulfilled through the repair of recycled assets.  The requirement for new procurement of 

assets could be due to numerous reasons including increased demand, increased repair 

lead time, decreased repair ability, and asset losses.   

Lead time represents the expected delay time associated with particular portions 

of the supply chain.  ERP tracks NIIN-level lead times and sigmas (deviations) for 

procurement, production, procurement administrative, repair, and repair administrative.  

Those details are important for setting safety levels and demand forecasts, as well as 

identifying areas where efficiencies could be improved.  Procurement problem variable 

(PPV) comprises the demand and lead time measures associated with each NIIN.  

Specifically, NIIN attrition and regeneration demand expectations are combined with 

their respective lead times to determine a combined demand over lead time value.   

The ability to repair certain inventory items saves the Navy millions of dollars 

each year by way of not completely replacing the assets.  These substantial cost savings 

come at the expense of a much more complex supply chain.  ERP’s measures of repair 

ability include forecasts, rates, and sigmas for survival, carcass return, and retrograde 

pipeline loss.  Survival rate represents the probability that a carcass will be repaired 

successfully by the depot-level repair facility.  Carcass return rate represents the 

probability that carcasses (inoperable units) will be returned to the depot level for repair.  

Retrograde pipeline loss rate represents the portion of carcasses that will be lost due to 

repair and non-repair reasons, including survival rate and carcass return rate.   

Numerous price types are associated with each NIIN.  These include standard, 

net, replacement, and repair.  The different prices reflect a part’s ability to be repaired, 

the price to repair it, and the price to replace it.  All Navy parts are classified as either 

consumable items or DLR items.  DLR items are repairable and consumable items are not 

repairable.  The classification is based on whether repairing the item would be more 

economical than replacing it with a new one.  For example, a $10 shower curtain would 
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be considered a consumable item, whereas a $25,000 pump assembly would be a 

repairable.  Standard and net prices represent incoming revenue for WSS from inventory 

sales.  Replacement and repair prices represent costs due to inventory replenishment.  

The standard price of an item is charged to the customer for either a consumable part or a 

repairable part with no carcass turn-in.  Net price is the rebate price charged to the 

customer when a carcass turn-in is provided.  Replacement and repair prices are those 

paid by WSS to repair and replace the inventory items, respectively.  As with commercial 

businesses, the standard and net prices are usually higher than the replace and repair 

prices due to additional costs of managing the inventory. 

Classifications make up the largest portion of ERP’s metadata elements.  Classes, 

indicators, codes, identifiers, symbols, routers, and flags comprise approximately half of 

the total data fields.  These elements are used not only to identify the specific managers, 

locations, and treatments of NIINs, but they are also used in many ERP decision trees 

that determine the demand forecasts and inventory level settings assigned to the NIINs.   

Data availability, consistency, and completeness within ERP vary greatly across 

the universe of NIINs.  The reasons for these issues include ERP inconsistencies, limited 

item manager time for data updates, and different data feed timing, to name a few.  

Considering the more than 100 data fields available through the ERP NIIN attribute and 

sales document data tables, it is not uncommon to find more than a third of those fields 

empty.  The number and types of problem fields vary from NIIN to NIIN.  Additionally, 

the data types and measurements vary greatly from field to field.  These types include 

continuous, categorical, binary, and integer.  The vast differences from field to field make 

popular data analysis techniques extremely difficult, if not impossible.   

C. VARIABLE SELECTION 

In the effort to prioritize NIINs for resource allocation, there must be an 

understanding of what NIIN attributes should drive their prioritization.  A combination of 

regression analysis and subject matter expertise provides the best approach to 

determining the drivers of WSS’s primary goals, fill rate and operational readiness.  Each 

method is used to check and balance the other.  
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The significant differences in unit type, measurement, and magnitude among data 

elements render typical and popular regression analysis techniques impractical.  

Attempting to correct the underlying assumptions of uncorrelated errors, constant 

variance of errors, and linear independence of predictors would be nearly impossible with 

such a large diverse dataset.  Therefore, using traditional regression analysis techniques 

which operate under these assumptions is not a feasible option. 

Instead, a relatively new approach introduced by Breiman (2001) is utilized for 

the regression analysis.  This machine learning ensemble method combines the qualities 

of advanced clustering analysis with regression analysis to classify observations and/or 

prioritize factors.  Random forests are generated by growing a multitude of decision trees 

from random data points in a large dataset.  A decision tree represents a predictive 

modeling approach that maps an item’s qualities (predictor variables) to its target value 

(response variable).  The leaves of the tree represent specific classes and the branches 

represent conjunctions of factors that lead to those classes.   

A detailed decision tree sample provided by Rokach & Maimon (2008) is shown 

in Figure 14.  In this example, the tree is used to facilitate the underwriting process of 

mortgage applicants.  The variables considered for determining whether a mortgage 

application is approved, denied, or manually reviewed are years at current job, loan to 

value ratio, marital status, years at current address, and number of dependents.  For 

example, if an individual has been at a job for at least two years, is divorced, and has at 

least one dependent, the decision is to approve the application.  If the individual is single 

instead of divorced, the decision is to disapprove the application.   
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of its primary driver, on-hand inventory.  If a requisition is received and there is 

inventory immediately available to fill it, the requisition earns a “hit”.  Every requisition 

will either count as a “hit” or “miss” towards fill rate based on whether inventory is on 

hand or not.  Because we already know that on-hand inventory will directly affect fill 

rate, including it as a predictor variable is unhelpful.  Additionally, its correlation with fill 

rate is so high that it dwarfs the random forest results of other variables.  As these 

overpowering variables are identified, they must be manually removed from the dataset 

and excluded in successive forest builds.  Once all of the overpowering variables are 

removed, the variables that account for very few splits can also be removed.   

Common sense, item manager advice, and WSS analyst advice are used in 

double-checking that the random forest suggestions are correct before any variables are 

removed.  This iterative process is basically a sequence of removing the variables that are 

insignificant to the goals of this study so that the relative importance among remaining 

variables can be more appreciated.  After much iteration, the final results are shown in 

Figure 16.  The size of the pink bar for each variable represents that variable’s relative 

strength in explaining fill rate.  For instance, the pink bar associated with PPV is the 

largest in the table, meaning it is the most important variable in the effort to explain fill 

rate.  The results in the table, coupled with subject matter expert verification, primarily 

point to the variables associated with measures of and/or variance in demand, time, price, 

and criticality.  These factors are the ones further discussed and included in the 

prioritization model. 
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The final criticality measure considered in this analysis is the IMEC.  IMECs are 

assigned to parts based on a combination of military essentiality codes (MEC) and 

mission criticality codes (MCC).  MECs are 1-digit codes assigned to parts based on their 

essentiality to an applicable end item.  They are assigned during the initial provisioning 

process of parts.  MCCs are 1-digit codes assigned to a part based on its criticality to the 

mission of the military unit where it is installed.  MCCs were created and designed to be 

updated over time in an effort to reflect how often and at what level parts are whiskey-

requisitioned. 

IMECs are assigned to parts based on a combination of MCCs and MECs.  IMEC 

codes range from 0 through 5, with higher codes representing increased criticality 

assignment.  An IMEC code of 0 is assigned when a part first enters the supply system, 

and updates as requisition data is obtained.  An IMEC code of 5 is reserved for aviation 

parts and represents parts with the highest criticality assignments.  IMEC code 

assignment is an important concept that can help identify high-priority parts.  

Unfortunately, many system issues prevent them from being updated regularly and 

correctly.  These issues must remain in mind when factoring criticality codes into the 

NIIN prioritization model.  Figure 25 provides the distribution of IMECs across the 

dataset.  Though this dataset only includes maritime NIINs, 18 NIINs are identified as 

IMEC code 5 items.  This error, coupled with that fact that code 4 is assigned more than 

any other code, are clear indicators of the inconsistency and updating issues previously 

mentioned.  For the purposes of this analysis, the IMEC codes are assumed to be close 

enough to the true criticality measures to add value to the model.   
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Though the WNO model could theoretically use all 21 of the identified variables, 

many of these would be redundant and create a much more complex model than required.  

As with any optimization model, there are numerous tradeoffs with added depth and 

complexity.  In this case, these tradeoffs include significant increases in the model’s 

runtime, increased subjectivity in variable rankings, and less flexibility in adding 

complexity via NIIN list growth.  Ultimately, the goal is to maximize the flexibility and 

simplicity of the model while capturing as much of the important variable data as 

possible. 

 Variables and variable combinations most representative of the fill rate drivers 

are used in the model.  Criticality, dollar usage, requisition volume, requisition variance, 

PPV, and PPV Variance are the six model variables used to incorporate and represent 

requisitions, requisitions variance, quantity demand, whiskey requisitions, high-priority 

requisitions, IMEC-4 NIINs, PPV, PPV variance, RPLR, repair price, and replacement 

price.  Though NIINs with demand of at least 1 over a 36-month period are included in 

the model, different time frames within that 36-month period are used for the sales 

document data (requisitions, requisition variance, whiskey requisitions, and high-priority 

requisitions).  All other variables use values provided by the ERP wholesale file tables 

provided by WSS in May of 2014.   

Sales document data covering requisition, requisition variance, and high-priority 

requisition values over the 24-month period from April 2012 through March 2014 are 

used in this model.  Whiskey requisition data is included for the time frame of April 2013 

through March 2014.  The two-year requisition and 1-year whiskey requisition time 

frames were chosen because WSS analysts and decision makers believe those time 

frames are most representative of future requirements.  Any major issues with NIINs 

prior to those time frames are assumed to have been addressed and worked out by item 

management processes in place.  Additionally, as ERP has steadily become more reliable 

since its implementation, data collected after the initial transition period tends to be much 

more consistent.  Though the model focuses on the 24- and 12-month time frames, sales 

document data was gathered and combined for each NIIN over numerous time frames.  

These alternative time frame figures can be easily implemented into the model for further 
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study.  Table 5 shows an example of the different time frame sales document data values 

for a single NIIN.  The rows represent the total, average, and variance of requisitions, 

quantity demand, whiskey requisitions, and priority-1 requisitions over five specific time 

frames.  Specifically, these figures over time frames of 36 months, 24 months, 18 

months, 12 months, and 6 months were captured.   

 

Table 5.   Demand values for NIIN 000011632 over different time frames. 

Requisitions and requisition variance warrant their own individual model 

variables.  Every requisition of a NIIN affects fill rate the same way, regardless of 

criticality, price, or quantity.  Requisition and requisition variance are the best tools to 

predict and plan for the volume and predictability of future requisitions.  This proper 

planning then leads to requisition fulfillment and increased fill rate metrics.  Requisition 

values for each NIIN over the past 24 months represent a single variable, and the standard 

deviation of requisition variance over that same time frame will also represent a single 

variable.   

The variable representing criticality is a combination of high-priority requisitions 

over the past 24 months, whiskey requisitions over the past 12 months, and the NIIN’s 

assigned IMEC code.  The formula used to calculate the criticality score is shown below.  

The formulation is subjective in nature, but proves to be a good approximation of the 

importance of each measure to the overall criticality score.  In many cases, requisitions 

will fall under all three measures (whiskey, high-priority, and high IMEC); in which case, 

that requisition will contribute in three different ways to the NIIN’s criticality measure.  

In this formulation, whiskey requisitions have a 50% higher weighting than high-priority 

requisitions and up to multiples of a higher weighting than IMEC.  Whiskey requisitions 

undoubtedly represent the highest priority needs and should be signified as such in any 

criticality formulation.   
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(Whiskey Requisitions * 1.5) + High-Priority Requisitions 
Criticality Score = 

+ Total Requisitions * (.10 * IMEC)

 
 
 

      (2) 

 

Table 6 displays how criticality scores would represent a few different scenarios 

for a single NIIN.  Three scenarios were generated for four different NIINs.  While IMEC 

and requisition figures were constant for each NIIN, whiskey and high-priority values 

were randomly generated for each scenario.  The criticality formula was applied to each 

scenario, criticality scores were generated, and the scenarios were ranked by score.  On a 

relative basis, the rankings for each NIIN under the scenarios make sense and prove to be 

acceptable measures.   

  

Table 6.   Criticality scores and rankings for 4 NIINs under three different 
scenarios. 

As with the requisitions and requisitions variance variables, PPV and PPV 

variance both warrant their own model variables.  They are the only model variables that 

represent the lead times and potential pipeline problems associated with each NIIN.  

Specifically, they consider attrition demand, regeneration demand, procurement lead 

time, repair pipeline loss rate, and repair turnaround time.  Of course, many of these 

factors consider additional measures associated with NIINs.  PPV and PPV variance are 

extremely important to fill rate goals because even if WSS knows exactly what the future 

demand is going to be, if the parts are not on the shelf due to pipeline issues, the 

requisition is scored a “miss” and fill rate decreases.  PPV and PPV variance values were 
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drawn for each NIIN from ERP’s data tables in April of 2014, and are used as individual 

variables in the model. 

Multiple perspectives must be considered when determining how to factor price 

into the model.  Revenues, costs, and margins all represent different aspects of the 

business and can be considered for NIIN prioritization.  In a non-profit case such as the 

DOD, margins are not necessarily a real concern.  Therefore, revenues or costs, rather 

than margins, should be the dollar usage driver in the model.  Because WSS has more 

control over spending than it does revenue (over which it has very little), inventory cost 

proves to be the best pricing basis for the model’s dollar usage variable.  In summary, the 

dollar usage variable considers unit demand, retrograde pipeline loss rate, repair price, 

and replacement price to calculate an expected cost for WSS to supply that unit demand.  

The formulation used for dollar usage is shown below. 

(Retrograde Pipeline Loss Rate * Unit Demand * Replacement Price) 
Dollar Usage = 

+ ((1 - Retrograde Pipeline Loss Rate) * Unit Demand * Repair Price)

 
 
 

      (3) 

The final step of the WNO model preparation is to rank these six variables 

(criticality, dollar usage, requisition volume, requisition variance, PPV, and PPV 

variance) in order of importance.  Besides the formulated variables and time frame 

considerations, this is the only subjective portion of the model setup.  Because the model 

optimizes the variable weights to maximize total summed score, only an ordinal ranking 

of the six variables is required.  All six model variables include at least some form of 

demand volume.  Therefore, the primary fill rate driver (requisitions) will be strongly 

represented regardless of the variable ranking.  With that in mind, focus shifts to 

variables that encompass other aspects strongly affecting operational readiness.   

Criticality represents operational readiness better than all other variables.  The 

fact that just one small part could potentially render an entire warship not operationally 

ready is reason enough to consider criticality as the highest priority variable.  Dollar 

usage falls in line with the original theory behind ABC analysis.  Dollars tied up in 

stagnant inventory severely diminishes a business’s ability to fund high-demand and/or 

highly critical stock.  In this case, stagnant stock not only limits replenishment of high-
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demand stock which drives fill rate, but also critical parts that strongly affect operation 

readiness.  WSS’s essential need to be as efficient as possible with the limited and 

constrained budget identifies dollar usage as the No. 2 priority variable.  

Requisitions, requisitions variance, PPV, and PPV variance are all heavily 

correlated with demand.  Though PPV and PPV variance can identify potential pipeline 

problems through lead time measures, higher values aren’t necessarily indicative of 

problems.  If inventory levels are set high enough for a high-PPV item, the pipeline may 

still be very healthy.  Still, the item does have the potential to quickly experience major 

issues if demand or lead times change significantly.  On the other hand, higher 

requisitions and requisitions variance values do directly reflect higher importance to fill 

rate and operational readiness.  Therefore, the initial rankings for the final four variables 

are requisitions, requisitions variance, PPV, and PPV variance, in order. 

In summary, the final variable rankings for initial model runs are criticality, dollar 

usage, requisitions, requisitions variance, PPV, and PPV variance, in order.  Table 7 

provides a summary of these variables and the sales document and/or NIIN attributes 

associated with each variable.   

 

Table 7.   Table of variables and associated attributes that are used to 
prioritize NIINs in WNO model. 
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IV. MODEL ANALYSIS 

A. MODEL  

One of the major advantages of the weighted non-linear optimization model is its 

simplicity.  The model is designed to be simple enough to run in Microsoft Excel with the 

basic “solver” add-in and its generalized reduced gradient (GRG) nonlinear solving 

method.  The list of NIINs (17,587) and their six associated variables (criticality, dollar 

usage, requisitions, requisitions variance, PPV, and PPV variance) are entered into the 

spreadsheet.  Each variable is transformed into a score based on its rank relative to the 

minimum and maximum values for that particular variable across the entire set of NIINs.  

For instance, if a particular NIIN has the highest criticality value among the entire group 

of NIINs, its initial transformed criticality score would be a 1.  The next highest NIIN's 

criticality score would be lower than 1, but the degree to how much lower it is depends 

on how much lower its criticality variable value is than that of the highest NIIN.  The 

magnitude of differences plays a role in the relative scores for each NIIN.  Each 

transformed score is eventually multiplied by the weight optimally assigned to its 

particular variable by the solver.   

The next step is to rank the variables in terms of importance, which creates 

constraints for the optimization problem.  In the Excel model, the weight of each variable 

is constrained to being less than or equal to the weight of the next highest variable minus 

one one-millionth of a point.  Each weight is constrained to a non-negative value and the 

sum of the squared weights for all variables is constrained to a maximum of 1.  The 

weights are squared to increase the feasible region and therefore, supply a more precise 

result.  The squaring will cause the actual weights to sum to more than 1, but this has no 

negative impact on results or goals. 

The weighted transformed variables are summed, creating an individual total 

score for each NIIN.  The final scores for all NIINs are summed to create a total score for 

the entire list.  This total score is the objective function value for the solver’s 

optimization problem.  Solver maximizes the total score for the list by optimizing the 
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B. MODEL RESULTS 

Metrics used to measure and compare the model results are based on percentage 

capture among different groups of NIINs.  Table 8 provides the results for different 

quantities of the top-priority NIINs.  The column titles represent the number of NIINs in 

the grouping, and the row titles represent specific metrics being measured.  For instance, 

the first cell under the “500” title states that the top 500 NIINs account for 40.55% of the 

total requisitions represented by the entire list of 17,587 NIINs.  Continuing down that 

same column, the same group of 500 NIINs represent 81.99%, 56.42%, 92.64%, 29.28%, 

36.56%, 4.86%, and 45.21% of the list’s total requisitions variance, PPV, PPV variance, 

whiskey requisitions, priority 1-3 requisitions, IMEC-4 NIINs, and dollar usage, 

respectively.  Any variety of metrics can be used to measure volume and/or percentage 

captured by a particular prioritized subset of NIINs, but these best represent the fill rate 

and operational readiness drivers.  Figure 31 provides a visual depiction of the WNO 

model’s metric capture results.    

 

Table 8.   WNO’s results, representing % coverage of total metric value for 
each specified number of highest priority NIINs. 
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criteria for the model is shown below in Table 9.  Category A includes NIINs with 

greater than 54 requisitions or greater than 9 CASREP requisitions.  After ranking the 

NIINs according to category assignment, the NIINs are ranked within each category 

based on requisition volume.  In its current ABCD method, WSS does not rank items 

within each classification group.  The items were ranked that way in this analysis to 

represent a best-case scenario (maximizing requisition volume capture) for the ABCD 

model.  Like the results table shown for the WNO model, Table 10 displays the metric 

capture results for the ABCD model.  Though a few of the capture rates are relatively 

close, others are significantly different.  Results are only provided up through 3,000 

NIINs because management believes it will be extremely difficult to optimally manage 

more than 1,000 NIINs, much less 3,000.   A ceiling of 3,000 NIINs is used because 

optimally managing that many is an absolute best-case scenario that will probably never 

be reached.   

 

Table 9.   Classification levels are set via historical 24-month demand data, 
12-month CASREP data, and specified platform degraders. 



 52

 

Table 10.   Results of ABCD prioritization, representing % coverage of total 
metric value for each specified number of highest priority NIINs. 

Table 11 provides a comparison of the WNO and ABCD model results.  Each cell 

represents the increase (green) or decrease (red) in metric capture by using the ABCD 

model instead of the WNO model.  Specifically, the results of the WNO rankings are 

subtracted from the results of the ABCD ranking, meaning the green cells represent better 

performance than the WNO model and red cells represent poorer performance than 

WNO.  The top 500 prioritized NIINs in the ABCD model capture 1.73% more 

requisitions than the WNO model.  On the other hand, the ABCD model captures 11.42% 

less dollar usage than the WNO model.  The results show that minor declines in a few 

metrics using WNO provide significant increases in other categories. 

 

Table 11.   Results of NIIN prioritization based on ABCD instead of WNO, 
representing increase or decrease in % coverage of total metric 

value for each specified number of highest priority NIINs. 
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results of this model highlight the importance of applying at least some sort of 

prioritization scheme to inventory.   

Aside from the Random model, all models have specific pros and cons.  These 

pros and cons are amplified as models are compared and contrasted with each other.  

Graphical depictions of the metric coverage provide a detailed picture of the relative 

value provided by each model and how that value relates to fill rate and the fleet 

readiness.     

D. COMPARISON OF ALTERNATIVE MODELS 

The highest ranked variable in the WNO model is criticality.  It is the only 

variable that applies a sense of operational importance to each NIIN.  Figure 32 provides 

a graphical illustration of the criticality metric captured by each model.  The vertical axis 

represents the cumulative percentage of total criticality captured, relative to the sum of all 

criticality scores for the entire dataset.  The primary horizontal axis (beneath graph) 

represents the cumulative percentage of total NIINs that captures the corresponding 

criticality.  The secondary horizontal axis (above graph) represents the number of NIINs 

that make up that cumulative percentage.  For example, approximately 60% of the total 

criticality metric is captured by the top 8% (or 1,400) highest ranked NIINs of the 

Criticality model.  The same number of highest ranked NIINs in the Dollar Usage and 

Random models captures approximately 45% and 8% of the criticality metric, 

respectively.  Based on the criticality metric, the Criticality model outperforms all 

models, while the ABCD, Requisitions, and WNO models follow in a close group not too 

far behind.  The Dollar Usage and Random models capture significantly less of the 

criticality metric than the other models.    
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decrease results for 36/24 and 18/6 time frames are shown in Tables 17 and 18.  The 

small differences prove to be relatively insignificant.  

 

Table 16.   Results of WNO NIIN prioritization using 24/12 (24 months of 
requisitions and 12 months of whiskey requisitions). 

 

Table 17.   Comparison results of WNO NIIN prioritization using 36/24 
instead of 24/12. 
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Table 18.   Comparison results of WNO NIIN prioritization using 18/6 instead 
of 24/12. 

F. ANALYSIS OF WNO VERSUS ABCD ON FUTURE REQUISITIONS 

Two types of analysis are conducted to gauge the predictive abilities of each 

model.  The first analysis considers a scenario where the WNO and ABCD models are 

employed to rank NIINs using data from an 18-month time frame.  Those rankings are 

then used to determine each model’s metrics capture of an ensuing 18-month time frame.  

The second analysis explores how the model rankings perform when measuring data not 

included in the original analysis and model build. 

For the first analysis, data from the 18-month time frame of April 2011 through 

September 2012 is used to rank NIINs.  Specifically, sales document data for that time 

frame and wholesale file NIIN data from September 2012 are used.  For the WNO model, 

NIINs are ranked based on the newly generated scores.  The metrics capture results for 

the WNO model over the initial 18-month timeframe are shown below in Table 19.  For 

comparison purposes, the metrics capture results for NIINs ranked by requisition and 

whiskey volume are also generated.  The exact ABCD model parameters are not used 

because they are built for a 24-month requisitions volume time frame rather than the 18-

month time frame used in this analysis.  The NIIN rankings for both models are then 

applied to sales document data for the ensuing 18-month time frame of October 2012 

through March 2014 and the wholesale file NIIN data from March 2014.  Table 20 shows 

how much of each metric was captured during the new time frame for the WNO rankings.  
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The tables show that the metrics capture does decrease slightly.  The metric capture 

differences between the WNO model and the requisition and whiskey volume model 

shown in Table 21 are consistent with the results from previously analyzed timeframes.  

Small improvements over the WNO model in a couple of metrics are countered by 

significant losses in other metrics.      

  

Table 19.   Results of WNO NIIN prioritization using data from 
April 2011—September 2012. 

 

Table 20.   Results of WNO NIIN prioritization using data from 
October 2012—March 2014. 
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Table 21.   Comparative results of using a requisition and whiskey volume 
prioritization model instead of the WNO model for two sequential 

18-month timeframes. 

The second analysis explores how the models perform when applied to data not 

included in the original WNO model build.  The data used to build the WNO model 

includes sales document data from April 2011 through March 2014.  More recent sales 

document data from the period of April through June of 2014 is now used for predictive 

analysis of how the models might perform in the future.  With such a short time frame 

and small sample size, the scope is extremely limited.  In theory, a model would have 

prioritized NIINs for resource allocation back in April of 2014, and then WSS planners 

and contracting specialists would have focused on placing optimal controls on the high-

priority NIINs.  Because that has not happened in the span of this study, using a recent 90 

days of sales data to compare models might provide a bit of insight of future model 

performance.   

Sales document data for three months from April through June of 2014 is 

gathered and analyzed.  The analysis focuses on comparing the two most likely models to 

be implemented by WSS, that is: WNO and ABCD.  The analysis hones in on the sales 

data of NIINs that were classified differently between the two models.  Based on ABCD 

criteria and the 24-month requisition time frame, 570 NIINs would be classified as “A,” 

636 as “B,” 1319 as “C,” and the remainder as “D.”  The same numbers of NIINs were 

assigned to each category based on WNO model prioritization.  As with the prior 

analysis, family member NIIN data are rolled up into and represented by the family head 
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Table 22.   WNO model results, based on requisitions from April through June 
of 2014. 

 

Table 23.   ABCD model results, based on requisitions from April through 
June of 2014. 

The limited scope of this analysis significantly limits the weight it should be 

given.  It does show, however, that minor deterioration in the capture of a couple of 

metrics lead to significant improvements in the capture of other metrics.  These results 

are consistent with the larger scale analysis used to build the models.  Additionally, the 

budgeting efficiency tied to tightening controls on high PPV and dollar usage items 

should lead to higher requisition capture over time.  A better idea of the effects of those 

tighter controls can be explored through advanced simulation models and further 

analysis.   
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V. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSIONS 

Decades of research and analysis has shown that ABC analysis is a viable concept 

that should be employed in nearly any inventory management system.  The criteria used 

to prioritize inventory should be representative of business goals.  For WSS, these goals 

include fill rate and operational readiness.  Fill rate is a direct function of demand and 

inventory on hand, while operational readiness is based on both demand and the 

criticality measures of that demand.  While WSS cannot change business rules or 

prioritize NIINs in an effort to directly impact demand, it can impact the amount and 

stability of inventory on hand.  Regression analysis, in the form of random forests, 

identified variables associated with demand, lead time, and price as the inventory 

qualities strongly affecting fill rate.  Subject matter expertise was used to identify 

variables representing criticality measures and to create criticality factors for ABC 

analysis. 

Of all explored ABC analysis methods, the multi-criteria weighted non-linear 

optimization technique proved to be the best option for WSS’s NIIN prioritization goals.  

It optimally assigns weights to priority-ranked NIIN factors so as to maximize the 

summation of factor-based scores across all NIINs being ranked.  This technique 

identifies the order in which NIINs should be optimally managed based on the priorities 

specified.  The model maximizes the cumulative capture of each factor as NIINs are 

added to the list in prioritized order.   

A model based on WNO was built in Microsoft Excel and used to prioritize the 

NIINs competing for WSS resources.  Requisition volume, requisition variance, 

criticality, dollar usage, PPV, and PPV variance were the metrics considered in the model 

for prioritization.  Cumulative metric capture was used to compare the WNO model 

results with alternative prioritization schemes such as ranking via ABCD, requisitions 

volume, criticality, dollar usage, and randomness.  Though four of these models slightly 

outperformed WNO in one or two measurements, WNO was by far the best modeling 
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method from a holistic approach.  Relative to each of the other models, slight losses in 

WNO capture of a few metrics was countered with significant gains in other metrics. 

Sensitivity analysis was also conducted on the WNO modeling approach.  

Different time frames were considered in addition to the baseline 24-month requisition 

and 12-month requisition data.  The sensitivity analysis ranged from 36 months of data 

down through 6 months of data.  The analysis showed only slight changes in terms of 

metric capture. 

Analysis was also conducted on the predictive abilities of the WNO and ABCD 

models.  Sales document data was collected for the three-month time frame following the 

time frame used for the original NIIN category assignments.  270 requisitions were 

received for NIINs categorized as “A” or “B” by WNO, but “C” or “D” by ABCD.  WSS 

achieved a fill rate far below its average on those requisitions.  None of the requisitions 

received were categorized as “A” or “B” by ABCD but “C” or “D” by WNO.  Though 

the analysis is limited in scope, it provides a sample of the value added by prioritization 

based on more than just requisition volume. 

B. RECOMMENDATIONS  

As opposed to WSS’s historical FIFO process, any NIIN prioritization scheme 

that considers at least requisition volume should provide increases in fill rate and 

operational readiness.  The most immediate increases in fill rate would result from the 

models that are squarely focused on requisition volume, such as the ABCD and 

Requisitions models.  Though these models will meet short-term objectives, their 

utilization is not the best long-term approach for WSS.  Unlike other options, WNO 

attacks the underlying drivers of fill rate while maintaining focus on operational 

readiness.   

The consideration of requisition variance, lead times, and dollar usage fosters 

inventory stability and the efficient use of a constrained inventory budget.  Inventory 

level stability is aided by predictable and stable lead times, which can be improved 

through item manager and contracting specialist attention.  Inventory budget efficiency is 

aided by limiting the dollar value of on-hand inventory, which can be improved through 
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tighter controls and strict oversight from item managers and contracting specialists.  As 

efficiencies improve in budget allocation, additional budget is available for allocation 

towards the lower demand items for which planning is so difficult. 

The flexibility to drive the WNO model using any number of factors is yet 

another feature superior to the other models.  WSS managers are able to choose other 

measures and the priorities of those measures to use in the model.  Though solely ranking 

NIINs based on requisition volume is discouraged, the WNO model can be easily tailored 

to prioritize based on just that criterion.   

There is no downside to implementing the WNO modeling approach into WSS 

NIIN prioritization.  Its flexibility, compatibility, and ability to optimize based on 

multiple criteria render it the superior model.  WSS would be best served, from a long-

term and holistic approach, by using the six criteria suggested for the proposed WNO 

model.  Though only time will tell how much the fill rate and operational readiness will 

improve with its implementation, theory and analysis suggests the improvements could 

be significant.          

C. FUTURE RESEARCH 

Numerous avenues are available for future research and/or application of the 

WNO modeling approach as it pertains to the WSS business.  The scope of this study 

consists only of maritime NIINs and wholesale maritime demand of those NIINs.  Other 

areas to consider are aviation NIINs, aviation wholesale demand, and both aviation and 

maritime retail demand.  Aviation NIINs require a large portion of WSS resources and 

can have significantly different attributes than maritime NIINs.  The application of the 

WNO model to aviation NIIN prioritization, albeit with different model factors, could 

provide comparable value seen by its application to maritime demand. 

WSS is responsible for all parts support of naval forces, regardless of the level at 

which that support is required.  For each naval command, parts are stored, requisitioned, 

and issued at both the retail and wholesale levels.  The majority of inventory parts issued 

to fill requisitions at the retail level are replenished through requisitions on the wholesale 

level.  While criticality measures are easy to obtain on the wholesale level (via whiskey 
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requisitions and priority levels), they are difficult to obtain on the retail level.  

Additionally, the accuracy of the criticality measures that are obtainable from retail 

requisitions is very questionable.  Much value could come from analyzing ways to 

incorporate and combine retail demand and criticality measures into the wholesale WNO 

model.  This analysis would be applicable to the realms of both maritime and aviation 

parts support.  
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